Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts)

Identifieur interne : 003279 ( Main/Exploration ); précédent : 003278; suivant : 003280

Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts)

Auteurs : Anna Manzano [Royaume-Uni] ; Zahra Mohri [Royaume-Uni] ; Galia Sperber [Royaume-Uni] ; Manfred Ogris [Allemagne] ; Ian Graham [Royaume-Uni] ; George Dickson [Royaume-Uni] ; James S. Owen [Royaume-Uni]

Source :

RBID : ISTEX:369A163E3D9963360FED707613D0870713B5F857

English descriptors

Abstract

Background: Elevated plasma high‐density lipoprotein (HDL), and its major constituent apolipoprotein AI (apoAI), are cardioprotective. Paradoxically, two natural variants of apoAI, termed apoAIMilano and apoAIParis, are associated with low HDL, but nevertheless provide remarkable protection against heart disease for heterozygous carriers and may even lead to longevity. Both variants arise from point mutations and have Arg173 and Arg151 to Cys substitutions, respectively, which allow disulphide‐linked dimers to form. Potentially, synthetic RNA/DNA oligonucleotides (chimeraplasts) can permanently correct single point mutations in genomic DNA. Here, we use a variation of such targeted gene repair technology, ‘gain‐of‐function chimeraplasty’, and attempt to enhance the biological activity of apoAI by altering a single genomic base to generate the atheroprotective phenotypes, apoAIMilano and apoAIParis. Methods: We targeted two cultured cell lines that secrete human apoAI, hepatoblastoma HepG2 cells and recombinant CHO‐AI cells, using standard 68‐mer chimeraplasts with polyethyleneimine (PEI) as carrier and then systematically varied several experimental conditions. As a positive control we targeted the dysfunctional APOE2 gene, which we have previously converted to wild‐type APOE3. Results: Conversion of wild‐type apoAI to apoAIMilano proved refractory, with limited correction in CHO‐AI cells only. However, a successful conversion to apoAIParis was achieved, as demonstrated by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis and direct genomic sequencing. Unexpectedly, attempts with a new batch of 68‐mer chimeraplast to enhance conversion, by using different delivery vehicles, including chemically modified PEI, failed to show a base change; nor could conversion be detected with an 80‐mer or a 52–76‐mer series. In contrast, when a co‐culture of CHO‐E2 and CHO‐AI cells was co‐targeted, a clear conversion of apoE2 to apoE3 was seen, whereas no apoAIParis could be detected. When the individual chimeraplasts were analysed by denaturing electrophoresis only the active apoE2‐to‐E3 chimeraplast gave a sharp band. Conclusions: Our findings suggest that different batches of chimeraplasts have variable characteristics and that their quality may be a key factor for efficient targeting and/or base conversion. We conclude that, although an evolving technology with enormous potential, chimeraplast‐directed gene repair remains problematical. Copyright © 2003 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jgm.403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts)</title>
<author>
<name sortKey="Manzano, Anna" sort="Manzano, Anna" uniqKey="Manzano A" first="Anna" last="Manzano">Anna Manzano</name>
</author>
<author>
<name sortKey="Mohri, Zahra" sort="Mohri, Zahra" uniqKey="Mohri Z" first="Zahra" last="Mohri">Zahra Mohri</name>
</author>
<author>
<name sortKey="Sperber, Galia" sort="Sperber, Galia" uniqKey="Sperber G" first="Galia" last="Sperber">Galia Sperber</name>
</author>
<author>
<name sortKey="Ogris, Manfred" sort="Ogris, Manfred" uniqKey="Ogris M" first="Manfred" last="Ogris">Manfred Ogris</name>
</author>
<author>
<name sortKey="Graham, Ian" sort="Graham, Ian" uniqKey="Graham I" first="Ian" last="Graham">Ian Graham</name>
</author>
<author>
<name sortKey="Dickson, George" sort="Dickson, George" uniqKey="Dickson G" first="George" last="Dickson">George Dickson</name>
</author>
<author>
<name sortKey="Owen, James S" sort="Owen, James S" uniqKey="Owen J" first="James S." last="Owen">James S. Owen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:369A163E3D9963360FED707613D0870713B5F857</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/jgm.403</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-4FZSDRL7-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000436</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000436</idno>
<idno type="wicri:Area/Istex/Curation">000436</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C84</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C84</idno>
<idno type="wicri:doubleKey">1099-498X:2003:Manzano A:failure:to:generate</idno>
<idno type="wicri:Area/Main/Merge">003314</idno>
<idno type="wicri:Area/Main/Curation">003279</idno>
<idno type="wicri:Area/Main/Exploration">003279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts)</title>
<author>
<name sortKey="Manzano, Anna" sort="Manzano, Anna" uniqKey="Manzano A" first="Anna" last="Manzano">Anna Manzano</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, Royal Free and University College Medical School, London NW3 2PF</wicri:regionArea>
<wicri:noRegion>London NW3 2PF</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Biochemistry, Royal Holloway University of London, Egham, Surrey TW20 0EX</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mohri, Zahra" sort="Mohri, Zahra" uniqKey="Mohri Z" first="Zahra" last="Mohri">Zahra Mohri</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, Royal Free and University College Medical School, London NW3 2PF</wicri:regionArea>
<wicri:noRegion>London NW3 2PF</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sperber, Galia" sort="Sperber, Galia" uniqKey="Sperber G" first="Galia" last="Sperber">Galia Sperber</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, Royal Free and University College Medical School, London NW3 2PF</wicri:regionArea>
<wicri:noRegion>London NW3 2PF</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ogris, Manfred" sort="Ogris, Manfred" uniqKey="Ogris M" first="Manfred" last="Ogris">Manfred Ogris</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Pharmacy, Ludwig‐Maximilians‐Universität München, München</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Graham, Ian" sort="Graham, Ian" uniqKey="Graham I" first="Ian" last="Graham">Ian Graham</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Biochemistry, Royal Holloway University of London, Egham, Surrey TW20 0EX</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dickson, George" sort="Dickson, George" uniqKey="Dickson G" first="George" last="Dickson">George Dickson</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Biochemistry, Royal Holloway University of London, Egham, Surrey TW20 0EX</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Owen, James S" sort="Owen, James S" uniqKey="Owen J" first="James S." last="Owen">James S. Owen</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, Royal Free and University College Medical School, London NW3 2PF</wicri:regionArea>
<wicri:noRegion>London NW3 2PF</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr" wicri:curation="lc">Royaume-Uni</country>
<wicri:regionArea>Correspondence address: Department of Medicine, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF</wicri:regionArea>
<wicri:noRegion>London NW3 2PF</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="ISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<imprint>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="795">795</biblScope>
<biblScope unit="page" to="802">802</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-09">2003-09</date>
</imprint>
<idno type="ISSN">1099-498X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1099-498X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Active chimeraplast</term>
<term>Apoai</term>
<term>Apoaimilano</term>
<term>Apoaiparis</term>
<term>Apoe</term>
<term>Apoe2</term>
<term>Apoe3</term>
<term>Apolipoprotein</term>
<term>Atheroprotective</term>
<term>Chimeraplast</term>
<term>Chimeraplast design</term>
<term>Chimeraplasts</term>
<term>Chimeraplasty</term>
<term>Chimeric</term>
<term>Chimeric oligonucleotide</term>
<term>Chimeric oligonucleotides</term>
<term>Clear conversion</term>
<term>Copyright</term>
<term>Delivery vehicle</term>
<term>Diagnostic band</term>
<term>Different molar ratios</term>
<term>Direct sequencing</term>
<term>Gene</term>
<term>Gene correction</term>
<term>Gene repair</term>
<term>Genomic</term>
<term>Heart disease</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>John wiley sons</term>
<term>Kmiec</term>
<term>Mammalian cells</term>
<term>Molar</term>
<term>Molar ratio</term>
<term>Mutation</term>
<term>Nucleic acids</term>
<term>Oligonucleotides</term>
<term>Point mutations</term>
<term>Positive control</term>
<term>Proc natl acad</term>
<term>Reagent</term>
<term>Recombinant</term>
<term>Recombinant cells</term>
<term>Rflp</term>
<term>Rflp analysis</term>
<term>Sequencing</term>
<term>Synthetic oligonucleotides</term>
<term>Yoon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Elevated plasma high‐density lipoprotein (HDL), and its major constituent apolipoprotein AI (apoAI), are cardioprotective. Paradoxically, two natural variants of apoAI, termed apoAIMilano and apoAIParis, are associated with low HDL, but nevertheless provide remarkable protection against heart disease for heterozygous carriers and may even lead to longevity. Both variants arise from point mutations and have Arg173 and Arg151 to Cys substitutions, respectively, which allow disulphide‐linked dimers to form. Potentially, synthetic RNA/DNA oligonucleotides (chimeraplasts) can permanently correct single point mutations in genomic DNA. Here, we use a variation of such targeted gene repair technology, ‘gain‐of‐function chimeraplasty’, and attempt to enhance the biological activity of apoAI by altering a single genomic base to generate the atheroprotective phenotypes, apoAIMilano and apoAIParis. Methods: We targeted two cultured cell lines that secrete human apoAI, hepatoblastoma HepG2 cells and recombinant CHO‐AI cells, using standard 68‐mer chimeraplasts with polyethyleneimine (PEI) as carrier and then systematically varied several experimental conditions. As a positive control we targeted the dysfunctional APOE2 gene, which we have previously converted to wild‐type APOE3. Results: Conversion of wild‐type apoAI to apoAIMilano proved refractory, with limited correction in CHO‐AI cells only. However, a successful conversion to apoAIParis was achieved, as demonstrated by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis and direct genomic sequencing. Unexpectedly, attempts with a new batch of 68‐mer chimeraplast to enhance conversion, by using different delivery vehicles, including chemically modified PEI, failed to show a base change; nor could conversion be detected with an 80‐mer or a 52–76‐mer series. In contrast, when a co‐culture of CHO‐E2 and CHO‐AI cells was co‐targeted, a clear conversion of apoE2 to apoE3 was seen, whereas no apoAIParis could be detected. When the individual chimeraplasts were analysed by denaturing electrophoresis only the active apoE2‐to‐E3 chimeraplast gave a sharp band. Conclusions: Our findings suggest that different batches of chimeraplasts have variable characteristics and that their quality may be a key factor for efficient targeting and/or base conversion. We conclude that, although an evolving technology with enormous potential, chimeraplast‐directed gene repair remains problematical. Copyright © 2003 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
<li>Université de Londres</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Manzano, Anna" sort="Manzano, Anna" uniqKey="Manzano A" first="Anna" last="Manzano">Anna Manzano</name>
</noRegion>
<name sortKey="Dickson, George" sort="Dickson, George" uniqKey="Dickson G" first="George" last="Dickson">George Dickson</name>
<name sortKey="Graham, Ian" sort="Graham, Ian" uniqKey="Graham I" first="Ian" last="Graham">Ian Graham</name>
<name sortKey="Manzano, Anna" sort="Manzano, Anna" uniqKey="Manzano A" first="Anna" last="Manzano">Anna Manzano</name>
<name sortKey="Mohri, Zahra" sort="Mohri, Zahra" uniqKey="Mohri Z" first="Zahra" last="Mohri">Zahra Mohri</name>
<name sortKey="Owen, James S" sort="Owen, James S" uniqKey="Owen J" first="James S." last="Owen">James S. Owen</name>
<name sortKey="Owen, James S" sort="Owen, James S" uniqKey="Owen J" first="James S." last="Owen">James S. Owen</name>
<name sortKey="Owen, James S" sort="Owen, James S" uniqKey="Owen J" first="James S." last="Owen">James S. Owen</name>
<name sortKey="Sperber, Galia" sort="Sperber, Galia" uniqKey="Sperber G" first="Galia" last="Sperber">Galia Sperber</name>
</country>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Ogris, Manfred" sort="Ogris, Manfred" uniqKey="Ogris M" first="Manfred" last="Ogris">Manfred Ogris</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:369A163E3D9963360FED707613D0870713B5F857
   |texte=   Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021